# Silicon-lead chalcogenides of the types $\mathrm{Me}_{4} \mathrm{Si}_{2}(\mathrm{E})_{2} \mathrm{PbPh}_{2}$ and $\mathrm{Ph}_{2} \mathrm{~Pb}(\mathrm{E})_{2} \mathrm{Si}_{2} \mathrm{Me}_{2}(\mathrm{E})_{2} \mathrm{PbPh}_{2}(\mathrm{E}=\mathrm{S}, \mathrm{Se})$ and related compounds containing tin and antimony 

Uwe Herzog ${ }^{\text {a,* }}$, Gerd Rheinwald ${ }^{\text {b }}$<br>${ }^{\text {a }}$ Institut für Anorganische Chemie, TU Bergakademie Freiberg, Leipziger Straße 29, D-09596 Freiberg, Germany<br>${ }^{\mathrm{b}}$ Institut für Chemie, Lehrstuhl Anorganische Chemie, TU Chemnitz, Straße der Nationen 62, D-09111 Chemnitz, Germany

Received 3 September 2001; received in revised form 29 October 2001; accepted 29 October 2001


#### Abstract

The reaction of a $1: 1$ mixture of $\mathrm{Ph}_{2} \mathrm{PbCl}_{2}$ and $\mathrm{ClSiMe}_{2}-\mathrm{SiMe}_{2} \mathrm{Cl}$ with $\mathrm{H}_{2} \mathrm{~S} / \mathrm{NEt}_{3}$ yielded the mixed silicon-lead sulfide $\mathrm{Me}_{4} \mathrm{Si}_{2}\left(\mathrm{~S}_{2} \mathrm{PbPh}_{2}\right.$ (1a), a bicyclic silicon lead sulfide, $\mathrm{Ph}_{2} \mathrm{~Pb}\left(\mathrm{~S}_{2} \mathrm{Si}_{2} \mathrm{Me}_{2}(\mathrm{~S})_{2} \mathrm{PbPh}_{2}\right.$ (1b) was obtained by similar treatment of a $2: 1$ mixture of $\mathrm{Ph}_{2} \mathrm{PbCl}_{2}$ and $\mathrm{Cl}_{2} \mathrm{SiMe}-\mathrm{SiMeCl}_{2}$. The corresponding selenium compounds ( $\mathbf{2 a}-\mathbf{b}$ ) were obtained by reactions of mixtures of $\mathrm{Ph}_{2} \mathrm{PbCl}_{2}$ and methylchlorodisilanes with $\mathrm{Li}_{2} \mathrm{Se}$ in THF. All products were characterized by multinuclear $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right.$, ${ }^{29} \mathrm{Si},{ }^{77} \mathrm{Se}$ and ${ }^{207} \mathrm{~Pb}$ ) NMR spectroscopy. The molecular structure of $\mathbf{1 a}$ is reported revealing a central five membered ring $\mathrm{Si}_{2} \mathrm{~S}_{2} \mathrm{~Pb}$ in envelope conformation with one sulfur atom ( S 1 ) above the plane defined by the atoms $\mathrm{Pb} 1-\mathrm{S} 2-\mathrm{Si} 2-\mathrm{Si} 1$. For comparison, the tin compounds $\mathrm{Me}_{4} \mathrm{Si}_{2}\left(\mathrm{Se}_{2} \mathrm{SnPh}_{2}(\mathbf{4 a})\right.$, and $\mathrm{Ph}_{2} \mathrm{Sn}\left(\mathrm{Se}_{2} \mathrm{Si}_{2} \mathrm{Me}_{2}\left(\mathrm{Se}_{2} \mathrm{SnPh}_{2}(\mathbf{4 b})\right.\right.$ have also been prepared essentially applying the same procedure as for compounds $\mathbf{2 a}-\mathbf{b}$. A plot of $\delta\left({ }^{207} \mathrm{~Pb}\right)$ of $\mathbf{1 a}-\mathbf{2 b}$ versus $\delta\left({ }^{119} \mathrm{Sn}\right)$ of the corresponding tin compounds $\mathbf{3 a}-\mathbf{4 b}$ exhibits a linear correlation with a slope of $4.11( \pm 0.17)$. Attempts to build related cycles containing a Group 15 element led to the isolation of the antimony compounds $\mathrm{Me}_{4} \mathrm{Si}_{2}(\mathrm{E})_{2} \mathrm{SbPh}(\mathbf{5 a}: \mathrm{E}=\mathrm{S}, \mathbf{5 b}: \mathrm{E}=\mathrm{Se})$ starting from $\mathrm{ClSiMe}_{2}-\mathrm{SiMe}_{2} \mathrm{Cl}^{2}, \mathrm{PhSbCl}_{2}$ and either $\mathrm{H}_{2} \mathrm{~S} / \mathrm{NEt}_{3}$ or $\mathrm{Li}_{2} \mathrm{Se}$. © 2002 Elsevier Science B.V. All rights reserved.


Keywords: NMR spectroscopy; Silicon-lead chalcogenides; Antimony; Tin

## 1. Introduction

Recently we have reported on the synthesis of cyclic and bicyclic chalcogenides of the types $\mathrm{Me}_{4} \mathrm{Si}_{2}(\mathrm{E})_{2} \mathrm{MR}_{x}$ $\left(\mathrm{E}=\mathrm{S}, \mathrm{Se}, \mathrm{Te}, \mathrm{MR}_{x}=\mathrm{BPh}, \mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}, \mathrm{SiMe}_{2}, \mathrm{SiMePh}\right.$, $\mathrm{SiPh}_{2}, \mathrm{GeMe}_{2}, \mathrm{SnMe}_{2}$ ) [1] and $\mathrm{R}_{2} \mathrm{M}(\mathrm{E})_{2} \mathrm{Si}_{2} \mathrm{Me}_{2}(\mathrm{E})_{2} \mathrm{MR}_{2}$ $\left(\mathrm{E}=\mathrm{S}, \mathrm{Se}, \mathrm{Te}, \mathrm{MR}_{2}=\mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}, \mathrm{SiMe}_{2}, \mathrm{SiMePh}, \mathrm{SiPh}_{2}\right.$, $\mathrm{GeMe}_{2}, \mathrm{SnMe}_{2}$ ) [2]. For $\mathrm{M}=\mathrm{B}, \mathrm{Si}, \mathrm{Ge}$ and Sn these compounds have been prepared by reacting a mixture of the corresponding dichloride and either $\mathrm{ClSiMe}_{2}-$ $\mathrm{SiMe}_{2} \mathrm{Cl}$ or $\mathrm{Cl}_{2} \mathrm{SiMe}-\mathrm{SiMeCl}_{2}$ with lithium sulfide, selenide or telluride Eqs. (1) and (2):


[^0]

In absence of the methylchlorodisilanes the diorganodichlorides of Group 14 elements ( $\mathrm{Si}, \mathrm{Ge}, \mathrm{Sn}$ ) react with lithium or sodium chalcogenides under formation of trimeric diorganochalcogenides $\left(\mathrm{R}_{2} \mathrm{ME}\right)_{3}[1,3,4]$.

A related lead sulfide, $\left(\mathrm{Ph}_{2} \mathrm{PbS}\right)_{3}$, was described for the first time in 1887 [5]. Crystal structure analysis of cis-trans $-(\mathrm{PhMeSiS})_{3}[6],\left(\mathrm{Me}_{2} \mathrm{SnS}\right)_{3}[7,8],\left(\mathrm{Me}_{2} \mathrm{SnSe}\right)_{3}$ [9], $\left(\mathrm{Me}_{2} \mathrm{SnTe}\right)_{3}$ [10], $\left(\mathrm{Ph}_{2} \mathrm{SnS}_{3}\right.$ [11], $\left(\mathrm{Ph}_{2} \mathrm{PbS}\right)_{3}$ [11], $\left(o-\mathrm{Tol}_{2} \mathrm{PbS}\right)_{3}[12]$ and $\left(p-\mathrm{Tol}_{2} \mathrm{PbS}\right)_{3}$ [12] have been reported revealing non-planar six-membered rings $\mathrm{M}_{3} \mathrm{E}_{3}$ which adopt a twisted boat conformation.

On the other hand, $\mathrm{ClSiMe}_{2}-\mathrm{SiMe}_{2} \mathrm{Cl}$ reacts with $\mathrm{Li}_{2} \mathrm{E}(\mathrm{E}=\mathrm{S}, \mathrm{Se}, \mathrm{Te})$ under formation of the six membered ring compounds $\mathrm{E}\left(\mathrm{SiMe}_{2}-\mathrm{SiMe}_{2}\right)_{2} \mathrm{E}$. Molecular
structure analyses for $\mathrm{E}=\mathrm{S}$ and Se have shown that in these cases the six-membered rings adopt chair conformations [1].

DFT calculations on the system (Eq. (3)):

revealed that the formation of the five membered ring compound is accompanied by a decrease in the total energy of $36 \mathrm{~kJ} \mathrm{~mol}^{-1}$ in accordance with the observed favorite formation of these five membered rings [13]. So far, molecular structures of such unfused five-membered rings are only known for the dimeric compound $\mathrm{Me}_{4} \mathrm{Si}_{2}\left(\mathrm{~S}_{2} \mathrm{SiMe}-\mathrm{SiMe}\left(\mathrm{S}_{2} \mathrm{Si}_{2} \mathrm{Me}_{4}\right.\right.$ [1] and the tin com-



1a: $E=S$ 2a: $E=S e$


1b: $E=S$
2b: $E=S e$

Scheme 1.
pound $\mathrm{Me}_{4} \mathrm{Sn}_{2}\left(\mathrm{Se}_{2} \mathrm{SnMe}_{2}\right.$ [14]. While in the first case the five-membered rings adopt twist conformations (very similar to the calculated geometry of $\mathrm{Me}_{4} \mathrm{Si}_{2}\left(\mathrm{~S}_{2} \mathrm{SiMe}_{2}\right.$ [13]) the latter shows an envelope conformation with the distannane unit and the two selenium atoms in one plane.

The aim of this work is to extend these investigations on five membered rings containing a disilane unit as well as another Group 14 element linked by chalcogen atoms towards lead containing cyclic and bicyclic chalcogenides.

## 2. Results and discussion

A 1:1 molar mixture of diphenyldichloroplumbane, prepared by treatment of a suspension of $\mathrm{Ph}_{4} \mathrm{~Pb}$ in $\mathrm{CHCl}_{3}$ with HCl , and 1,2-dichlorotetramethyldisilane yielded on treatment with either $\mathrm{H}_{2} \mathrm{~S}-\mathrm{NEt}_{3}$ or $\mathrm{Li}_{2} \mathrm{Se}$ the new compounds $\mathbf{1 a}$ and $\mathbf{2 a}$ containing a five membered ring $\mathrm{Si}_{2} \mathrm{E}_{2} \mathrm{~Pb}$ (see Scheme 1). The corresponding bicyclic compounds $\mathbf{1 b}$ and $\mathbf{2 b}$ were observed by similar reactions of a 2:1 molar mixture of $\mathrm{Ph}_{2} \mathrm{PbCl}_{2}$ and 1,1,2,2-tetrachlorodimethyldisilane (Scheme 1).

The NMR data of $\mathbf{1 a - 2 b}$ are summarized in Table 1. So far the NMR data of the corresponding tin compounds have only been known for $\mathrm{E}=\mathrm{S}$ (3a-b [1,2], for $\mathrm{E}=\mathrm{Se}$ similar compounds with $\mathrm{SnMe}_{2}$ units instead of $\mathrm{SnPh}_{2}$ have been reported, too in $\left.[1,2]\right)$. Therefore, the tin compounds $\mathbf{4 a}$ and $\mathbf{4 b}$ have also been prepared applying essentially the same procedure as for the lead compounds $\mathbf{2 a}-\mathbf{b}$, the NMR data of $\mathbf{3 a}-\mathbf{4 b}$ are given in Table 2.

While the ${ }^{29} \mathrm{Si}-\mathrm{NMR}$ chemical shifts of the lead containing cycles and bicycles are close to those of the

Table 1
NMR data of silicon-lead heterocycles (chemical shifts in ppm, coupling constants in Hz )

| compound | ${ }^{77} \mathrm{Se}$ | ${ }^{207} \mathrm{~Pb}$ | ${ }^{29} \mathrm{Si}$ | ${ }^{13} \mathrm{C}$ | ${ }^{1} \mathrm{H}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1a | - | 268 | $\begin{gathered} 11.48 \\ { }^{2} \mathrm{~J}_{\mathrm{sipb}}: 7.3 \\ { }^{2} \mathrm{~J}_{\mathrm{sic}}: 45.7 \end{gathered}$ | $\begin{aligned} & \text { Me: } 2.65\left({ }^{3} \mathrm{~J}_{\mathrm{PbC}}: 25.3\right) \\ & \text { Ph: i: } 157.33\left({ }^{\prime} \mathrm{J}_{\mathrm{PbC}}: 581\right) \\ & \text { o: } 135.23\left({ }^{2} \mathrm{~J}_{\mathrm{PbC}}: 97.4\right), \mathrm{m}: 130.16\left({ }^{3} \mathrm{~J}_{\mathrm{PbC}}: 115.8\right) \\ & \mathrm{p}: 129.78\left({ }^{4} \mathrm{~J}_{\mathrm{PCC}}: 26.8\right) \end{aligned}$ | $\begin{aligned} & \text { Me: } 0.373 \\ & \text { Ph: } 0: 7.66,\left({ }^{3} \mathrm{~J}_{\mathrm{HH}}: 6.6\right) \\ & \text { m: } 7.43 \\ & \text { p: } 7.30 \end{aligned}$ |
| lb | - | 247 | $\begin{gathered} 32.91 \\ { }^{2}{ }^{2} \mathrm{~J}_{\text {SiPb: }}: 4.4 \\ { }^{1} \mathrm{~J}_{\mathrm{SiC}}: 48.3 \end{gathered}$ | $\begin{aligned} & \text { Me: } 8.80\left({ }^{3} \mathrm{~J}_{\mathrm{PCC}}: 22.2\right) \\ & \text { Ph: i: } 157.75 / 157.92 \\ & \text { o: } 135.30\left({ }^{2} \mathrm{~J}_{\mathrm{PbC}}: 97.4\right) / 135.56\left({ }^{2} \mathrm{~J}_{\mathrm{Pb}}: 88.9\right) \\ & \mathrm{m}: 130.07\left({ }^{3} \mathrm{~J}_{\mathrm{PbC}}: 124.2\right) / 130.36\left({ }^{3} \mathrm{~J}_{\mathrm{PbC}}: 115.0\right) \\ & \text { p: } 129.85 / 129.98 \end{aligned}$ | $\begin{aligned} & \text { Me: } 0.704 \\ & \text { Ph: o: } 7.65 / 7.67 \\ & \text { m: } 7.48 / 7.50 \\ & \text { p: } 7.36 \end{aligned}$ |
| 2a | -390 | $\begin{gathered} 25 \\ { }^{\prime} \mathrm{J}_{\mathrm{Pbsc}}: 1544 \end{gathered}$ | $\begin{gathered} 13.03 \\ { }^{2} \mathbf{J}_{\text {Sipb }}: 9.2 \\ { }^{1} \mathrm{~J}_{\text {Sise }}: 116.3 \end{gathered}$ | $\begin{aligned} & \text { Me: } 2.26\left({ }^{3} \mathrm{~J}_{\mathrm{PbC}}: 24.5\right) \\ & \mathrm{Ph}: \mathrm{i}: 155.60 \\ & \text { o: } 135.30\left({ }^{2} \mathrm{~J}_{\mathrm{PbC}}: 93.6\right), \mathrm{m}: 129.91\left({ }^{3} \mathrm{JPbC}: 105.8\right) \\ & \text { p: } 129.48\left({ }^{4} \mathrm{~J}_{\mathrm{Pb}}: 23.0\right) \end{aligned}$ | $\begin{aligned} & \text { Me: } 0.490 \\ & \text { Ph: o: } 7.65,\left({ }^{3} \mathrm{~J}_{\mathrm{HH}}: 5.1\right) \\ & \mathrm{m}: 7.41 \\ & \text { p: } 7.30 \end{aligned}$ |
| 2b | -346 | $\begin{gathered} 66 \\ { }^{1} \mathrm{~J}_{\text {Pbse }}: 1477 \end{gathered}$ | $\begin{gathered} 33.62 \\ { }^{2} \mathrm{~J}_{\text {Siipb }}: 7.8 \\ { }^{\prime} \mathrm{J}_{\text {Sise }}: 156.2 \end{gathered}$ | $\begin{aligned} & \text { Me: } 8.70\left({ }^{3} \mathrm{~J}_{\mathrm{PbC}}: 19.9\right) \\ & \text { Ph: i: } 156.28 / 157.02 \\ & \text { o: } 135.37\left({ }^{2} \mathrm{~J}_{\mathrm{PbC}}: 93.6\right) / 135.52\left({ }^{2} \mathrm{~J}_{\mathrm{PbC}}: 98.2\right) \\ & \mathrm{m}: 129.84\left({ }^{3} \mathrm{~J}_{\mathrm{PbC}}: 114.3\right) / 130.14\left({ }^{3} \mathrm{~J}_{\mathrm{PbC}}: 105.8\right) \\ & \text { p: } 129.60 / 129.68 \end{aligned}$ | $\begin{aligned} & \text { Me: } 0.894 \\ & \text { Ph: } 0: 7.65 / 7.67 \\ & \text { m: } 7.38 / 7.46 \\ & \text { p: } 7.33 \end{aligned}$ |

Table 2
NMR data of silicon-tin and silicon-antimony heterocycles $\mathrm{Me}_{4} \mathrm{Si}_{2}(\mathrm{E}) \mathrm{SnPh}_{2}$ and $\mathrm{Ph}_{2} \mathrm{Sn}(\mathrm{E})_{2} \mathrm{Si}_{2} \mathrm{Me}_{2}(\mathrm{E})_{2} \mathrm{SnPh}_{2}(\mathrm{E}=\mathrm{S}$, $\mathrm{Se}(\mathbf{3 a - 4 b})$ and $\mathrm{Me}_{4} \mathrm{Si}_{2}(\mathrm{E})_{2} \mathrm{SbPh}(\mathbf{5 a - b})$; chemical shifts in ppm, coupling constants in Hz )

|  | compound | ${ }^{77} \mathrm{Se}$ | ${ }^{119} \mathrm{Sn}$ | ${ }^{29} \mathrm{Si}$ |
| :---: | :---: | :---: | :---: | :---: |
| 3a [1] |  | - | 68 | $\begin{gathered} 11.66 \\ { }^{2} \mathrm{~J}_{\mathrm{SiS}_{\mathrm{s}}}: 10.2 \\ { }^{\mathrm{y}} \mathrm{~J}_{\mathrm{SiC}}: 45.7 \end{gathered}$ |
| 3b [2] |  | - | 56 | $\begin{gathered} 31.41 \\ { }^{2} \mathrm{~J}_{\mathrm{S}: \mathrm{Sn}}: 8.8 \\ { }^{1} \mathrm{~J}_{\mathrm{Sic}}: 49.8 \end{gathered}$ |
| 4 a |  | $\begin{gathered} -467 \\ { }^{1} \mathrm{~J}_{\mathrm{SiSe}}: 110.3 \\ { }^{2} \mathrm{~J}_{\mathrm{SiSc}}: 8.3 \end{gathered}$ | $\begin{gathered} 10 \\ { }^{1} \mathrm{~J}_{\mathrm{SnSe}}: 1266 \end{gathered}$ | $\begin{gathered} 13.15 \\ { }^{2} \mathrm{~J}_{\mathrm{Sisn}: 12.4} \\ { }^{1} \mathrm{~J}_{\mathrm{SiC}}: 44.7 \end{gathered}$ |
| 4b |  | $\begin{gathered} -410 \\ { }^{1} \mathrm{~J}_{\mathrm{Si} \mathrm{Se}}: 142.9 \end{gathered}$ | $\begin{gathered} 16 \\ { }^{1} \mathrm{~J}_{\mathrm{SnSc}}: 1248 \end{gathered}$ | $\begin{gathered} 32.40 \\ { }^{2} \mathrm{~J}_{\mathrm{SiS}_{\mathrm{S}}}: 12.6 \end{gathered}$ |
| 5a |  | - | - | $\begin{gathered} 22.09 \\ { }^{1} \mathbf{J}_{\mathrm{Sic}}: 46.9 \end{gathered}$ |
| 5a |  | $\begin{gathered} -239 \\ { }^{1} \mathrm{~J}_{\text {Sise }}: 121.5 \\ { }^{2} \mathrm{~J}_{\text {Sise }}: 8.3 \end{gathered}$ | - | 23.96 |



Fig. 1. ${ }^{207} \mathrm{~Pb}$ - vs. ${ }^{119} \mathrm{Sn}-\mathrm{NMR}$ chemical shifts in $\mathrm{Me}_{4} \mathrm{Si}_{2}(\mathrm{E})_{2} \mathrm{MPh}_{2}$ and $\mathrm{Ph}_{2} \mathrm{M}(\mathrm{E})_{2} \mathrm{Si}_{2} \mathrm{Me}_{2}(\mathrm{E})_{2} \mathrm{MPh}_{2}(\mathrm{M}=\mathrm{Sn}, \mathrm{Pb} ; \mathrm{E}=\mathrm{S}, \mathrm{Se} ; \mathbf{1 a}-4 b)$.
corresponding tin containing derivatives, the ${ }^{77} \mathrm{Se}-\mathrm{NMR}$ chemical shifts of $\mathbf{2 a}-\mathbf{b}$ are 77 and 64 ppm , respectively, at lower field than those of $\mathbf{4 a}-\mathbf{b}$. It has been stated before [15] that in many compounds the ${ }^{207} \mathrm{~Pb}-\mathrm{NMR}$ chemical shifts parallel the ${ }^{119} \mathrm{Sn}-\mathrm{NMR}$ data of the analogous tin compounds by a factor of ca. 3.0. A correlation of the ${ }^{207} \mathrm{~Pb}$ - and ${ }^{119} \mathrm{Sn}-\mathrm{NMR}$ chemical shifts of $\mathbf{1 a} \mathbf{- 4 b}$ is given in Fig. 1, but the slope of the linear fit is with 4.11 somewhat larger. Compared with the six membered ring trimeric diphenyllead sulfide, $\left(\mathrm{Ph}_{2} \mathrm{PbS}\right)_{3}\left(\delta_{\mathrm{Pb}}: 173.4 \mathrm{ppm}[11]\right)$, the ${ }^{207} \mathrm{~Pb}-\mathrm{NMR}$ signals of the five membered ring compounds $\mathbf{1 a - b}$ are shifted by more than 70 ppm to lower field. This trend has
been observed before for $\delta_{\mathrm{Si}}$ and $\delta_{\mathrm{Sn}}$ in corresponding silicon and tin compounds [1].

The molecular structure analysis of $\mathbf{1 a}$ (Fig. 2) revealed a central five membered ring $\mathrm{PbS}_{2} \mathrm{Si}_{2}$ that adopts an envelope conformation. The interplanar angle between the planes formed by $\mathrm{Pb}(1)-\mathrm{S}(2)-\mathrm{Si}(2)-\mathrm{Si}(1)$ and $\mathrm{Pb}(1)-\mathrm{S}(1)-\mathrm{Si}(1)$ is $41.65(3)^{\circ}$. The sulfur atom $\mathrm{S}(1)$ is $1.032(1) \AA$ out of the plane defined by the atoms $\mathrm{Pb}(1)-\mathrm{S}(2)-\mathrm{Si}(2)-\mathrm{Si}(1)$. This may also be the reason for the difference in the angles $\mathrm{Pb}(1)-\mathrm{S}(1)-\mathrm{Si}(1)$ and $\mathrm{Pb}(1)-\mathrm{S}(2)-\mathrm{Si}(2)$ of almost $5^{\circ}$, see Table 3. The bond lengths $\mathrm{Pb}-\mathrm{S}$ and $\mathrm{Pb}-\mathrm{C}$ are comparable with the values found in the molecular structure of $\left(\mathrm{Ph}_{2} \mathrm{PbS}\right)_{3}$ (average $\mathrm{Pb}-\mathrm{S}: 2.491 \AA, \mathrm{~Pb}-\mathrm{C}: 2.191 \AA$ [11]). Due to the smaller ring size the angles $\mathrm{S}-\mathrm{Pb}-\mathrm{S}$ as well as those at the sulfur atoms are smaller than in $\left(\mathrm{Ph}_{2} \mathrm{PbS}\right)_{3}$ (average $\mathrm{S}-\mathrm{Pb}-\mathrm{S}$ : $\left.109.4^{\circ}, \mathrm{Pb}-\mathrm{S}-\mathrm{Pb}: 104.4^{\circ}\right)$.


Fig. 2. ORTEP plot of the molecular structure of $\mathbf{1 a}$.

Table 3
Selected bond distances $(\AA)$ bond angles and dihedral angles $\left({ }^{\circ}\right)$ of $\mathbf{1 a}$

| Atoms | Distances | Atoms | Angles |
| :--- | :--- | :--- | ---: |
| $\mathrm{Si}(1)-\mathrm{Si}(2)$ | $2.356(2)$ | $\mathrm{S}(1)-\mathrm{Pb}(1)-\mathrm{S}(2)$ | $103.96(4)$ |
| $\mathrm{Si}(1)-\mathrm{S}(1)$ | $2.151(2)$ | $\mathrm{Pb}(1)-\mathrm{S}(1)-\mathrm{Si}(1)$ | $95.73(5)$ |
| $\mathrm{Si}(2)-\mathrm{S}(2)$ | $2.140(2)$ | $\mathrm{Pb}(1)-\mathrm{S}(2)-\mathrm{Si}(2)$ | $100.48(5)$ |
| $\mathrm{Pb}(1)-\mathrm{S}(1)$ | $2.4995(11)$ | $\mathrm{S}(1)-\mathrm{Si}(1)-\mathrm{Si}(2)$ | $108.63(6)$ |
| $\mathrm{Pb}(1)-\mathrm{S}(2)$ | $2.4915(11)$ | $\mathrm{S}(2)-\mathrm{Si}(2)-\mathrm{Si}(1)$ | $111.17(6)$ |
| $\mathrm{Pb}(1)-\mathrm{C}(1)$ | $2.197(3)$ | $\mathrm{C}(1)-\mathrm{Pb}(1)-\mathrm{C}(7)$ | $120.51(13)$ |
| $\mathrm{Pb}(1)-\mathrm{C}(7)$ | $2.204(4)$ | $\mathrm{C}(13)-\mathrm{Si}(1)-\mathrm{C}(14)$ | $110.2(2)$ |
| $\mathrm{Si}(1)-\mathrm{C}(13)$ | $1.868(4)$ | $\mathrm{C}(15)-\mathrm{Si}(2)-\mathrm{C}(16)$ | $109.7(3)$ |
| $\mathrm{Si}(1)-\mathrm{C}(14)$ | $1.870(5)$ | $\mathrm{Pb}(1)-\mathrm{S}(2)-\mathrm{Si}(2)-\mathrm{Si}(1)$ | $-3.28(8)$ |
| $\mathrm{Si}(2)-\mathrm{C}(15)$ | $1.877(5)$ | $\mathrm{S}(1)-\mathrm{Pb}(1)-\mathrm{S}(2)-\mathrm{Si}(2)$ | $27.73(6)$ |
| $\mathrm{Si}(2)-\mathrm{C}(16)$ | $1.859(5)$ | $\mathrm{Si}(1)-\mathrm{S}(1)-\mathrm{Pb}(1)-\mathrm{S}(2)$ | $-42.39(5)$ |
|  |  | $\mathrm{Si}(2)-\mathrm{Si}(1)-\mathrm{S}(1)-\mathrm{Pb}(1)$ | $41.00(6)$ |
|  |  | $\mathrm{S}(2)-\mathrm{Si}(2)-\mathrm{Si}(1)-\mathrm{S}(1)$ | $-27.16(9)$ |

Table 4
Crystal data of 1a as well as data collection and refinement details

|  | 1a |
| :---: | :---: |
| Empirical formula | $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{PbS}_{2} \mathrm{Si}_{2}$ |
| Crystal shape | Plate |
| Crystal color | Colorless |
| Crystal size (mm) | $0.44 \times 0.12 \times 0.08$ |
| Formula weight | 541.83 |
| Crystal system | Triclinic |
| Space group | $P \overline{1}$ |
| Unit cell dimensions |  |
| $a(\mathrm{~A})$ | 8.709(2) |
| $b$ ( $\AA$ ) | 11.260(2) |
| $c(\AA)$ | 11.607(2) |
| $\alpha\left({ }^{\circ}\right)$ | 80.754(3) |
| $\beta\left({ }^{\circ}\right)$ | 72.789(3) |
| $\gamma\left({ }^{\circ}\right)$ | 70.474(3) |
| $V\left(\AA^{3}\right)$ | 1022.3(3) |
| $Z$ | 2 |
| $D_{\text {calc }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$ | 1.760 |
| Linear absorption coefficient ( $\mathrm{mm}^{-1}$ ) | 8.565 |
| Scan method | $\omega$ scans |
| Absorption correction | Empirical |
| Max/min transmission | 0.5474/0.1166 |
| Measured reflections | 11974 |
| Independent reflections | 5769 |
| Observed reflections | 4700 |
| $R_{\text {int }}$ | 0.0356 |
| $\theta$ range for collection ( ${ }^{\circ}$ ) | 1.84-30.88 |
| Index ranges | $\begin{aligned} & -11 \leq h \leq 11, \quad-15 \leq k \leq 15, \\ & -16 \leq l \leq 16 \end{aligned}$ |
| Completeness to $\theta_{\text {max }}$ (\%) | 89.3 |
| Final $R_{1} / w R^{2 \mathrm{a}}(\mathrm{I}>2 \sigma(I))$ | 0.0296/0.0576 |
| Final $R_{1} / w R^{2 a}$ (all data) | 0.0435/0.0610 |
| Goodness-of-fit ( $S$ ) on $F^{2}$ b | 0.960 |
| H -locating and refining | Geom./constr. |
| Max/min e-density (e $\AA^{-3}$ ) | 1.108/-1.148 |

[^1]So far no cyclic chalcogenides containing silicon and a Group 15 element are known. The reaction of a $1: 1$ molar mixture of $\mathrm{ClSiMe}_{2}-\mathrm{SiMe}_{2} \mathrm{Cl}$ and $\mathrm{PhSbCl}_{2}$ with $\mathrm{H}_{2} \mathrm{~S}$ in the presence of a tertiary amine yielded the antimony containing cycle 5a (Eq. (4)):


The corresponding selenium compound $\mathbf{5 b}$ emerged from $\mathrm{ClSiMe}_{2}-\mathrm{SiMe}_{2} \mathrm{Cl}$ and $\mathrm{PhSbCl}_{2}$ on treatment with $\mathrm{Li}_{2} \mathrm{Se}$.

The ${ }^{29} \mathrm{Si}-\mathrm{NMR}$ shifts of $\mathbf{5 a - b}$ are remarkable because they are some 10 ppm downfield from all related com-
pounds $\mathrm{Me}_{4} \mathrm{Si}_{2}(\mathrm{E})_{2} \mathrm{MR}_{2}(\mathrm{E}=\mathrm{S}, \mathrm{Se})$ with M constituting a Group 14 element (C, $\mathrm{Si}, \mathrm{Ge}, \mathrm{Sn}, \mathrm{Pb}$ ) (see Table 2).

## 3. Experimental

## 3.1. $N M R$ and GC-MS measurements

All NMR spectra were recorded on a Bruker DPX 400 in $\mathrm{CDCl}_{3}$ solution and with TMS as internal standard for ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{29} \mathrm{Si}$. External $\mathrm{Me}_{4} \mathrm{Sn}, \mathrm{Ph}_{4} \mathrm{~Pb}\left(\delta_{\mathrm{Pb}}\right.$ -178 ppm [16]) and $\mathrm{Ph}_{2} \mathrm{Se}_{2}\left(\delta_{\mathrm{Se}} 460 \mathrm{ppm}\right.$ [17]) in $\mathrm{CDCl}_{3}$ were used as standards for ${ }^{119} \mathrm{Sn},{ }^{207} \mathrm{~Pb}$ and ${ }^{77} \mathrm{Se}$.

In order to obtain a sufficient signal-to-noise ratio of ${ }^{29} \mathrm{Si}$-NMR spectra for resolving ${ }^{1} J_{\mathrm{SiC}},,{ }^{1,2} J_{\mathrm{SiSe}},{ }^{2} J_{\mathrm{SiSn}}$ or ${ }^{2} J_{\text {SiPb }}$ satellites ${ }^{29} \mathrm{Si}$ INEPT spectra were also recorded. ${ }^{77} \mathrm{Se},{ }^{119} \mathrm{Sn}$ and ${ }^{207} \mathrm{~Pb}$ spectra were determined using an igated pulse program.

The assignment of $\mathrm{C}^{\text {ipso }}$ in phenyl substituents was supported by recording ${ }^{13} \mathrm{C}$ APT spectra. Mass spectra were measured on a Hewlett-Packard 5971 (ionization energy 70 eV , column $30 \mathrm{~m} \times 0.25 \mathrm{~mm} \times 0.25 \mu \mathrm{~m}$, phenylmethylpolysiloxane, column temperature $80{ }^{\circ} \mathrm{C}$ $(3 \mathrm{~min}) / 20 \mathrm{~K} \mathrm{~min}^{-1}$, flow He $0.5 \mathrm{ml} \mathrm{min}^{-1}$ ).

### 3.2. Crystal structure analysis

X-ray structure analysis measurements were performed on a Bruker Smart 1k CCD area detector. Crystal data of $\mathbf{1 a}$ as well as data collection and refinement details are given in Table 4.

The unit cell dimensions were determined with the program smart [18]. For data integration and refinement of the unit cell parameters the program SAINT [10] was used. The space group was determined with the aid of the programs absen [19]. All data were corrected for absorption applying sadabs [20]. The structures were solved using direct methods (SIR97 [21]), refined using least-squares-methods (shelx-97 [22]) and drawn using zortep [23]. The ellipsoides at the non-hydrogen atoms are at the $50 \%$ probability level.

### 3.3. Starting materials

$\mathrm{H}_{2} \mathrm{~S}$, sulfur, selenium, triethylamine, $1 \mathrm{M} \mathrm{LiBEt}{ }_{3} \mathrm{H}$ in THF (super hydride), $\mathrm{Ph}_{2} \mathrm{SnCl}_{2}, \mathrm{Ph}_{3} \mathrm{Sb}, \mathrm{SbCl}_{3}$ and $\mathrm{Ph}_{4} \mathrm{~Pb}$ were commercially available. $\mathrm{Ph}_{2} \mathrm{PbCl}_{2}$ [24] was prepared by treatment of a stirred suspension of $\mathrm{Ph}_{4} \mathrm{~Pb}$ in $\mathrm{CHCl}_{3}$ with a stream of dry HCl for 2 h . The resulting white solid of $\mathrm{Ph}_{2} \mathrm{PbCl}_{2}$ was filtered and washed with $\mathrm{CHCl}_{3}$. THF was distilled from sodium potassium alloy prior to use. The other solvents were dried over KOH or sodium wire. All reactions were carried out under argon applying standard Schlenk techniques.
3.4. 5,5-Diphenyl-2,2,3,3-tetramethyl-1,4,2,3,5dithiadisilaplumbolane (1a) and 5,5-diphenyl-2,2,3,3-tetramethyl-1,4,2,3,5-diselenadisilaplumbolane (2a)

Compound 1a: $0.44 \mathrm{~g}(1 \mathrm{mmol}) \mathrm{Ph}_{2} \mathrm{PbCl}_{2}$ and 0.19 g ( 1 mmol ) $\mathrm{ClSiMe}_{2}-\mathrm{SiMe}_{2} \mathrm{Cl}$ were dissolved in 15 ml toluene and $0.62 \mathrm{ml}(4.5 \mathrm{mmol}) \mathrm{NEt}_{3}$ were slowly added while $\mathrm{H}_{2} \mathrm{~S}$ was bubbled through the stirred solution. The reaction mixture turned black (some PbS ) and a precipitation of $\mathrm{HNEt}_{3} \mathrm{Cl}$ occurred. After filtration, the solvent was removed in vacuo to yield 1a as colorless crystals, which could be recrystallized from hexane.

Compound 1a: Anal. Calc. for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{PbS}_{2} \mathrm{Si}_{2}$ (541.85 $\mathrm{g} \mathrm{mol}^{-1}$ ): C 35.47; H 4.09. Found: C 36.02; H 4.43\%.

Compound 2a: $0.44 \mathrm{~g}(1 \mathrm{mmol}) \mathrm{Ph}_{2} \mathrm{PbCl}_{2}$ and 0.19 g ( 1 mmol ) $\mathrm{ClSiMe}_{2}-\mathrm{SiMe}_{2} \mathrm{Cl}$ were dissolved in 3 ml toluene and this mixture $\left(\mathrm{Ph}_{2} \mathrm{PbCl}_{2}\right.$ forms a suspension $)$ was added to a suspension of $2 \mathrm{mmol} \mathrm{Li}_{2} \mathrm{Se}$ (prepared from $0.16 \mathrm{~g}(2 \mathrm{mmol})$ selenium powder and 4 ml of a 1 M solution of $\mathrm{LiBEt}_{3} \mathrm{H}$ in THF). The reaction mixture turned black (some PbSe ). After reacting for 30 min the solvents were removed in vacuo and replaced by 10 ml toluene. After filtration the solvent was removed to yield $2 \mathbf{2 a}$ as a light yellow oil.
3.5. 3,3,7,7-Tetraphenyl-1,5-dimethyl-2,4,6,8-tetrathia-3,7-diplumba-1,5-disilabicyclo[3.3.0]octane (1b) and 3,3,7,7-tetraphenyl-1,5-dimethyl-2,4,6,8-tetraselena-3,7-diplumba-1,5-disilabicyclo[3.3.0]octane (2b)

Compound 1b: 0.44 g ( 1 mmol ) $\mathrm{Ph}_{2} \mathrm{PbCl}_{2}$ and 0.115 $\mathrm{g}(0.5 \mathrm{mmol}) \mathrm{Cl}_{2} \mathrm{SiMe}-\mathrm{SiMeCl}_{2}$ were dissolved in 15 ml toluene and $0.62 \mathrm{ml}(4.5 \mathrm{mmol}) \mathrm{NEt}_{3}$ were slowly added while $\mathrm{H}_{2} \mathrm{~S}$ was bubbled through the stirred solution. Work-up as described for 1a yielded $\mathbf{1 b}$ as a colorless solid soluble in hexane, chloroform and toluene.

Compound 1b: Anal. Calc. for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~Pb}_{2} \mathrm{~S}_{4} \mathrm{Si}_{2}$ ( $937.31 \mathrm{~g} \mathrm{~mol}^{-1}$ ): C 33.32; H 2.80. Found: C 32.98; H $3.23 \%$.

Compound 2b: 0.44 g ( 1 mmol ) $\mathrm{Ph}_{2} \mathrm{PbCl}_{2}$ and 0.115 $\mathrm{g}(0.5 \mathrm{mmol}) \mathrm{Cl}_{2} \mathrm{SiMe}-\mathrm{SiMeCl}_{2}$ were dissolved in 3 ml toluene and added to a suspension of $2 \mathrm{mmol} \mathrm{Li}_{2} \mathrm{Se}$ as described above for 2a. An analogous work-up yielded $\mathbf{2 b}$ as a light yellow oil.
3.6. 5,5-Diphenyl-2,2,3,3-tetramethyl-1,4,2,3,5diselenadisilastannolane (4a) and 3,3,7,7-tetraphenyl-1,5-dimethyl-2,4,6,8-tetraselena-3,7-distanna-1,5disilabicyclo[3.3.0]octane (4b)

Compound 4a: $0.345 \mathrm{~g}(1 \mathrm{mmol}) \mathrm{Ph}_{2} \mathrm{SnCl}_{2}$ and 0.19 g ( 1 mmol ) $\mathrm{ClSiMe}_{2}-\mathrm{SiMe}_{2} \mathrm{Cl}$ were dissolved in 1.5 ml THF and added to a suspension of $2 \mathrm{mmol} \mathrm{Li}_{2} \mathrm{Se}$ in THF (prepared as described above). After 30 min the solvents were removed in vacuo and replaced by 10 ml
hexane. Removal of the solvent from the filtrate yielded 4a as a light yellow oil.

Compound 4a: ${ }^{119} \mathrm{Sn}-,{ }^{77} \mathrm{Se}-$ and ${ }^{29} \mathrm{Si}-\mathrm{NMR}$ : see Table 2, ${ }^{13} \mathrm{C}-\mathrm{NMR}: \mathrm{SiMe}_{2} 1.09\left({ }^{3} J_{\mathrm{SnC}}: 15.6 \mathrm{~Hz}\right)$, i 140.01 ( ${ }^{1} J_{\mathrm{SnC}}: 557.5 \mathrm{~Hz}$ ), o $135.39\left({ }^{2} J_{\mathrm{SnC}}: 53.2 \mathrm{~Hz}\right.$ ), $m 128.69$ $\left({ }^{3} J_{\mathrm{SnC}}: 66.5 \mathrm{~Hz}\right)$, $p 129.76 \mathrm{ppm}\left({ }^{4} J_{\mathrm{SnC}}: 16.4 \mathrm{~Hz}\right) ;{ }^{1} \mathrm{H}-$ NMR: $0.53\left(\mathrm{SiMe}_{2}\right), 7.65$ and $7.36 \mathrm{ppm}\left(\mathrm{SnPh}_{2}\right)$.

Compound 4b: $0.345 \mathrm{~g}(1 \mathrm{mmol}) \mathrm{Ph}_{2} \mathrm{SnCl}_{2}$ and 0.115 $\mathrm{g}(0.5 \mathrm{mmol}) \mathrm{Cl}_{2} \mathrm{SiMe}-\mathrm{SiMeCl}_{2}$ were dissolved in 1.5 ml THF and reacted with $2 \mathrm{mmol} \mathrm{Li}_{2} \mathrm{Se}$ as described above for $\mathbf{4 a}$. Work-up as for $\mathbf{4 a}$ yielded $\mathbf{4 b}$ as a light yellow solid product.

Compound 4b: ${ }^{119} \mathrm{Sn}-,{ }^{77} \mathrm{Se}-$ and ${ }^{29} \mathrm{Si}-\mathrm{NMR}$ : see Table 2, ${ }^{13} \mathrm{C}-\mathrm{NMR}: ~ S i M e ~ 6.04\left({ }^{3} J_{\mathrm{SnC}}: 15.7 \mathrm{~Hz}\right)$, i $139.33 /$ 140.03 , o $135.46\left({ }^{2} J_{\mathrm{SnC}}: 53.2 \mathrm{~Hz}\right) / 135.72\left({ }^{2} J_{\mathrm{SnC}}: 45.4\right.$ $\mathrm{Hz}), m 128.67\left({ }^{3} J_{\mathrm{SnC}}: 68.8 \mathrm{~Hz}\right) / 128.93\left({ }^{3} J_{\mathrm{SnC}}: 67.3 \mathrm{~Hz}\right)$, p 129.97/130.08 ppm; ${ }^{1} \mathrm{H}-\mathrm{NMR}: 1.00 \mathrm{ppm}$ (SiMe), $7.25-7.62 \mathrm{ppm}\left(\mathrm{SnPh}_{2}\right)$.

Compound 4a as well as $\mathbf{4 b}$ contained small amounts of $\left(\mathrm{Ph}_{2} \mathrm{SnSe}\right)_{3}$, which was proven by NMR spectroscopy.
$\left(\mathrm{Ph}_{2} \mathrm{SnSe}\right)_{3},{ }^{119} \mathrm{Sn}-\mathrm{NMR}:-43.2 \mathrm{ppm}$ (lit. -43.5 ppm [4]) ${ }^{1} J_{\text {SnSe }}: 1318 \mathrm{~Hz},{ }^{77} \mathrm{Se}-\mathrm{NMR}:-435 \mathrm{ppm}$ (lit. $-452 \mathrm{ppm}[4]),{ }^{13} \mathrm{C}-\mathrm{NMR}: i$ 139.91, o $135.39\left({ }^{2} J_{\mathrm{SnC}}\right.$ : $53.9 \mathrm{~Hz})$, m $128.57\left({ }^{3} J_{\mathrm{SnC}}: 70.4 \mathrm{~Hz}\right), p 129.65 \mathrm{ppm}$ $\left({ }^{4} J_{\mathrm{SnC}}: 12.3 \mathrm{~Hz}\right.$ ).

### 3.7. 2-Phenyl-4,4,5,5-tetramethyl-1,3,2,4,5-dithiastibadisilolane, $\mathrm{Me}_{4} \mathrm{Si}_{2}(\mathrm{~S})_{2} \mathrm{SbPh}(5 \boldsymbol{a})$ and 2-phenyl-4,4,5,5-tetramethyl-1,3,2,4,5-diselenastibadisilolane, $\mathrm{Me}_{4} \mathrm{Si}_{2}(\mathrm{Se})_{2} \mathrm{SbPh}$ (5a)

### 3.7.1. Phenyldichlorostibane, $\mathrm{PhSbCl}{ }_{2}$

About $4.56 \mathrm{~g}(20 \mathrm{mmol}) \mathrm{SbCl}_{3}$ and $3.53 \mathrm{~g}(10 \mathrm{mmol})$ $\mathrm{SbPh}_{3}$ were mixed and heated to $100{ }^{\circ} \mathrm{C}$ for 3 h yielding an oily product. After cooling to room temperature a NMR spectra of the product proved the formation of $\mathrm{PhSbCl}_{2}$ ( ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (ppm): $i$ 151.87, o 132.77, $m$ 129.43, p 131.43; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (ppm): o 7.75, m 7.47, $p$ 7.40) besides small amounts of $\mathrm{Ph}_{2} \mathrm{SbCl}\left({ }^{13} \mathrm{C}-\mathrm{NMR}\right.$ (ppm): $i$ 144.47, o 134.39, m 129.17, p 130.06; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (ppm): o 7.58, m 7.37, p 7.40).

### 3.7.2. $\mathrm{Me}_{4} \mathrm{Si}_{2}(\mathrm{~S})_{2} \mathrm{SbPh}$ (5a)

About $0.27 \mathrm{~g}(1 \mathrm{mmol}) \mathrm{PhSbCl}_{2}$ and $0.19 \mathrm{~g}(1 \mathrm{mmol})$ $\mathrm{ClSiMe}_{2}-\mathrm{SiMe}_{2} \mathrm{Cl}$ were dissolved in 20 ml toluene and 0.55 ml ( 4 mmol ) $\mathrm{NEt}_{3}$ were slowly added while a stream of $\mathrm{H}_{2} \mathrm{~S}$ was bubbled through the stirred solution. After filtration from the precipitated $\mathrm{HNEt}_{3} \mathrm{Cl}$ the solvent was removed in vacuo yielding $\mathbf{5 a}$ as a light yellow oily residue.

Compound 5a: ${ }^{29} \mathrm{Si}-\mathrm{NMR}$ : see Table 2, ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (ppm): 3.04/2.24 ( $\mathrm{SiMe}_{2}$ ), i 145.10, o 134.18, m 128.63, p 129.33; ${ }^{1} \mathrm{H}-\mathrm{NMR}: ~ 0.12 / 0.40\left(\mathrm{SiMe}_{2}\right), 7.75$ (ortho), 7.38 (meta + para).

GC-MS: 378 ( $\mathrm{M}^{+}, 3$ ), 363 ( $\mathrm{M}-\mathrm{Me}, 1$ ), 301 ( $\mathrm{M}-$ Ph, 1), $290\left(\mathrm{PhSbS}_{2} \mathrm{Si}, 2\right), 258(\mathrm{PhSbSSi}, 1), 228$
( $\left.\mathrm{SbS}_{2} \mathrm{SiMe}, 4\right), 198(\mathrm{PhSb}, 9), 165\left(\mathrm{~S}_{2} \mathrm{Si}_{2} \mathrm{Me}_{3}, 10\right), 135$ ( $\mathrm{PhSiMe}_{2}, 100$ ), 121 ( $\mathrm{Sb}, 2$ ), $73\left(\mathrm{SiMe}_{3}, 22\right)$.

### 3.7.3. $\mathrm{Me}_{4} \mathrm{Si}_{2}(\mathrm{Se})_{2} \mathrm{SbPh}$ (5b)

About $0.27 \mathrm{~g}(1 \mathrm{mmol}) \mathrm{PhSbCl}_{2}$ and $0.19 \mathrm{~g}(1 \mathrm{mmol})$ $\mathrm{ClSiMe}_{2}-\mathrm{SiMe}_{2} \mathrm{Cl}$ were dissolved in 1 ml THF. This mixture was added to a $\mathrm{Li}_{2} \mathrm{Se}$ suspension prepared from 2 mmol selenium and 4 ml of a 1 M solution of $\mathrm{LiBEt}_{3} \mathrm{H}$ in THF. After stirring for 30 min the solvent was replaced by 10 ml hexane. Filtration and removal of the solvent in vacuo yielded $\mathbf{5 b}$ as a light yellow oily residue.

Compound 5b: ${ }^{29} \mathrm{Si}$ - and ${ }^{77} \mathrm{Se}-\mathrm{NMR}$ : see Table 2, ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (ppm): 3.18/1.90 ( $\mathrm{SiMe}_{2}$ ), i 139.76 , o 135.03, $m$ 128.50, p 128.97; ${ }^{1} \mathrm{H}-\mathrm{NMR}: ~ 0.20 / 0.48$ ( $\mathrm{SiMe}_{2}$ ), 7.81 (ortho), 7.32 (meta + para).

## 4. Supplementary material

Crystallographic data (excluding structure factors) for 1a have been deposited at the Cambridge Crystallographic Data Centre as supplementary publication no.: CCDC no. 172656. Copies of the data can be obtained, free of charge, on application to The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (Fax: + 44-1223-336033 or e-mail: deposit@ccdc.cam.ac.uk or www: http://www.ccdc.cam.ac.uk).

## Acknowledgements

The authors thank the Deutsche Forschungsgemeinschaft for financial support. Special thanks are given to Professor H. Lang, Chair of Inorganic Chemistry, TU Chemnitz for the access to the X-ray facility used to determine the single crystal structures.

## References

[1] U. Herzog, G. Rheinwald, J. Organomet. Chem. 627 (2001) 23.
[2] U. Herzog, U. Böhme, E. Brendler, G. Rheinwald, J. Organomet. Chem. 630 (2001) 139.
[3] P. Boudjouk, S.R. Bahr, D.P. Thompson, Organometallics 10 (1991) 778.
[4] S.R. Bahr, P. Boudjouk, G.J. McCarthy, Chem. Mater. 4 (1992) 383.
[5] A. Polis, Ber. Deutsch Chem. Ges. 20 (1887) 3331.
[6] L. Pazdernik, F. Brisse, R. Rivest, Acta Crystallogr. Sect. B 33 (1977) 1780.
[7] B. Menzebach, P. Bleckmann, J. Organomet. Chem. 91 (1975) 291.
[8] H.-J. Jacobsen, B. Krebs, J. Organomet. Chem. 136 (1977) 333.
[9] M. Dräger, A. Blecher, H.-J. Jacobsen, B. Krebs, J. Organomet. Chem. 161 (1978) 319.
[10] A. Blecher, M. Dräger, Angew. Chem. 91 (1979) 740.
[11] B.M. Schmidt, M. Dräger, J. Organomet. Chem. 399 (1990) 63.
[12] H. Stenger, B.M. Schmidt, M. Dräger, Organometallics 14 (1995) 4374.
[13] U. Herzog, U. Böhme, G. Roewer, G. Rheinwald, H. Lang, J. Organomet. Chem. 602 (2000) 133.
[14] M. Dräger, B. Mathiasch, Z. Anorg. Allg. Chem. 470 (1980) 45.
[15] J.D. Kennedey, W. McFarlane, G.S. Pyne, J. Chem. Soc. Dalton (1977) 2332.
[16] D.C. van Beelen, H.O. van der Kooi, H. Wolters, J. Organomet. Chem. 179 (1979) 37.
[17] M. Lardon, J. Am. Chem. Soc. 92 (1970) 5063.
[18] Bruker AXS Inc., Madison, WI, USA, 1998.
[19] P. McArdle, J. Appl. Cryst. 29 (1996) 306.
[20] Sadabs: Area-Detector Absorption Correction, Madison, WI, USA: Siemens Industrial Automation, Inc., 1996.
[21] A. Altomare, M.C. Burla, M. Camalli, G.L. Cascarano, C. Giacovazzo, A. Guagliardi, A.G.G. Moliterni, G. Polidori, R. Spagna, J. Appl. Cryst. 32 (1999) 115.
[22] G.M. Sheldrick, shelx97. Programs for Crystal Structure Analysis (Release 97-2), University of Göttingen, Germany, 1997.
[23] zortep: L. Zsolnai, G. Huttner, Germany: University of Heidelberg, 1994.
[24] H. Gilman, D.S. Melstrom, J. Am. Chem. Soc. 72 (1950) 2953.


[^0]:    * Corresponding author. Tel.: +49-3731-394343; fax: + 49-3731394058.

    E-mail address: uwe.herzog@chemie.tu-freiburg.de (U. Herzog).

[^1]:    $\left.{ }^{\text {a }} R_{1}=\Sigma\left(| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right|\right) / \Sigma\left|F_{\mathrm{o}}\right|, w R^{2}=\left[\Sigma\left(w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2}\right) / \Sigma\left(w F_{\mathrm{o}}^{2}\right)\right]^{1 / 2}\right), w=$ $1 /\left[\sigma^{?}\left(F_{\mathrm{o}}^{2}\right)+(a P)^{2}+b P\right]$ where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$.
    ${ }^{\mathrm{b}} S=\left[\Sigma w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2}\right] /(n-p)^{1 / 2}, \quad n=$ used $\quad$ reflections, $\quad p=$ used parameters.

